
SANDIA REPORT
SAND99-2959
Unlimited Release
Printed December 1999

The Portals 3.0 Message Passing Interface,
Revision 1.0

Ron Brightwell, Tramm Hudson, Rolf Riesen, and Arthur B. Maccabe

Prepared by
Sandia National Laboratories
Albuquerque. New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporaiion
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited

Sandia National laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that itz use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any
agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http://www.ntis.gov/ordering.htm

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND99-2959
Unlimited Release

Printed December 1999

The Portals 3.0 Message Passing Interface

Revision 1.0 y

Ron Brightwell, Tramm Hudson, and Rolf Riesen
Computational Sciences, Computer Sciences, and Mathematics Center

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110

Arthur B. Maccabe
Department of Computer Science
The University of New Mexico

Albuquerque, NM 87131

Abstract

This report presents a speci�cation for the Portals 3.0 message passing interface. Portals 3.0 is
intended to allow scalable, high-performance network communication between nodes of a parallel
computing system. Speci�cally, it is designed to support a parallel computing platform composed
of clusters of commodity workstations connected by a commodity system area network fabric.
In addition, Portals 3.0 is well suited to massively parallel processing and embedded systems.
Portals 3.0 represents an adaption of the data movement layer developed for massively parallel
processing platforms, such as the 4500-node Intel TeraFLOPS machine.

yThis work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000.

3

Acknowledgment

Several people have contributed to the philosophy, design, and implementation of the Portals
message passing architecture as it has evolved. We acknowledge the following people for their
contributions: Al Audette, Lee Ann Fisk, David Greenberg, Gabi Istrail, Chu Jong, Mike Lev-
enhagen, Jim Otto, Mark Sears, Lance Shuler, Mack Stallcup, Je� VanDyke, Dave van Dresser,
Lee Ward, and Stephen Wheat.

4

Contents

1 Introduction 8

1.1 Overview . 8
1.2 Purpose . 8
1.3 Background . 9
1.4 Scalability . 9
1.5 Communication Model . 9
1.6 Zero Copy, OS Bypass and Application Bypass . 10

2 An Overview of the Portals API 10

2.1 Data Movement . 10
2.2 Portal Addressing . 11
2.3 Access Control . 12

3 The Portals API 13

3.1 Naming Conventions . 13
3.2 Base Types . 13

3.2.1 Sizes . 13
3.2.2 Handles . 13
3.2.3 Indexes . 14
3.2.4 Match Bits . 14
3.2.5 Network Interfaces . 14
3.2.6 Identi�ers . 14
3.2.7 Status Registers . 14

3.3 Initialization and Cleanup . 14
3.3.1 PtlInit . 14
3.3.2 PtlFini . 15

3.4 Process Identi�cation . 15
3.4.1 The Process Id Type . 15
3.4.2 PtlGetId . 15
3.4.3 PtlTransId . 16

3.5 Network Interfaces . 16
3.5.1 PtlNIInit . 16

3.5.2 PtlNIFini . 17
3.5.3 PtlNIBarrier . 17
3.5.4 PtlNIStatus . 18
3.5.5 PtlNIDist . 18
3.5.6 PtlNIHandle . 19

3.6 Match Entries and Match Lists . 19
3.6.1 PtlMEAttach . 19
3.6.2 PtlMEInsert . 20
3.6.3 PtlMEUnlink . 21

3.7 Memory Descriptors . 21
3.7.1 The Memory Descriptor Type . 21
3.7.2 PtlMDAttach . 23
3.7.3 PtlMDInsert . 24
3.7.4 PtlMDBind . 24
3.7.5 PtlMDUnlink . 25
3.7.6 PtlMDUpdate . 25

3.8 Events and Event Queues . 26
3.8.1 Kinds of Events . 26
3.8.2 The Event Type . 27
3.8.3 PtlEQAlloc . 27

5

3.8.4 PtlEQFree . 28
3.8.5 PtlEQCount . 28
3.8.6 PtlEQGet . 28
3.8.7 PtlEQWait . 29

3.9 The Access Control Table . 29
3.9.1 PtlACEntry . 29

3.10 Data Movement Operations . 30
3.10.1 PtlPut . 30
3.10.2 PtlGet . 31

3.11 Summary . 31

4 The Semantics of Message Transmission 33

4.1 Sending Messages . 33
4.2 Receiving Messages . 36

5 Examples 37

5.1 Parallel File Servers . 37
5.2 Dealing with Dropped Requests . 38
5.3 Message Transmission in MPI . 39

Figures

1 Portal Put (Send) . 11
2 Portal Get . 11
3 Portal Addressing Structures . 12
4 Portals Address Translation . 12
5 Parallel File Server . 38
6 Message Reception in MPI . 41

Tables

1 Object Type Codes . 13
2 Types De�ned by the Portals 3.0 API . 32
3 Functions De�ned by the Portals 3.0 API . 33
4 Function Return Codes for the Portals 3.0 API . 34
5 Other Constants De�ned by the Portals 3.0 API . 35
6 Information Passed in a Put Request . 35
7 Information Passed in an Acknowledgement . 35
8 Information Passed in a Get Request . 36
9 Information Passed in a Reply . 36

6

Glossary

API Application Programming Interface. A de�nition of the functions and semantics provided
by library of functions.

Group The collection of processes loaded as a parallel job.

Initiator A process that initiates a message operation.

Message An application-de�ned unit of data that is exchanged between processes.

Message Operation Either a put operation, which writes data, or a get operation, which reads data.

Network A network provides point-to-point communication between nodes. Internally, a network
may provide multiple routes between endpoints (to improve fault tolerance or to improve
performance characteristics); however, multiple paths will not be exposed outside of the
network.

Node A node is an endpoint in a network. Nodes provide processing capabilities and memory. A
node may provide multiple processors (an SMP node) or it may act as a gateway between

networks.

Process The instantiation of an executing program on a node.

Rank Each process in a group is assigned a unique integer in the range 0 to n, where n is the
number of processes in the group.

Target A process that is acted upon by a message operation.

7

The Portals 3.0 Message Passing System
Revision 1.0

1 Introduction

1.1 Overview

This document describes an application programming interface for message passing between nodes in a
system area network. The goal of this interface is to improve the scalability and performance of network
communication by de�ning the functions and semantics of message passing required for scaling a parallel
computing system to ten thousand nodes. This goal is achieved by providing an interface that will allow a
quality implementation to take advantage of the inherently scalable design of Portals.

This document is divided into several sections:

Section 1|Introduction

This section describes the purpose and scope of the Portals API.

Section 2|An Overview of the Portals 3.0 API

This section gives a brief overview of the Portals API. The goal is to introduce the key
concepts and terminology used in the description of the API.

Section 3|The Portals 3.0 API

This section describes the functions and semantics of the Portals application programming
interface.

Section 4{The Semantics of Message Transmission

This section describes the semantics of message transmission. In particular, the informa-

tion transmitted in each type of message and the processing of incoming messages.

Section 5|Examples

This section presents several examples intended to illustrates the use of the Portals API.

1.2 Purpose

Existing message passing technologies available for commodity cluster networking hardware do not meet
the scalability goals required by the Cplant [1] project at Sandia National Laboratories. The goal of the
Cplant project is to construct a commodity cluster that can scale to the order of ten thousand nodes. This
number greatly exceeds the capacity for which existing message passing technologies have been designed and
implemented.

In addition to the scalability requirements of the network, these technologies must also be able to support
a scalable implementation of the Message Passing Interface (MPI) [7] standard, which has become the de
facto standard for parallel scienti�c computing. While MPI does not impose any scalability limitations,
existing message passing technologies do not provide the functionality needed to allow implementations of
MPI to meet the scalability requirements of Cplant.

The following are properties of a network architecture that do not impose any inherent scalability limi-
tations:

� Connectionless - Many connection-oriented architectures, such as VIA [3] and TCP/IP sockets, have
limitations on the number of peer connections that can be established.

� Network independence - Many communication systems depend on the host processor to perform oper-
ations in order for messages in the network to be consumed. Message consumption from the network
should not be dependent on host processor activity, such as the operating system scheduler or user-level
thread scheduler.

8

� User-level ow control - Many communication systems manage ow control internally to avoid deplet-
ing resources, which can signi�cantly impact performance as the number of communicating processes
increases.

� OS Bypass - High performance network communication should not involve memory copies into or out
of a kernel-managed protocol stack.

The following are properties of a network architecture that do not impose scalability limitations for an
implementation of MPI:

� Receiver-managed - Sender-managed message passing implementations require a persistent block of
memory to be available for every process, requiring memory resources to increase with job size and
requiring user-level ow control mechanisms to manage these resources.

� User-level Bypass - While OS Bypass is necessary for high-performance, it alone is not suÆcient to
support the Progress Rule of MPI asynchronous operations.

� Unexpected messages - Few communication systems have support for receiving messages for which
there is no prior noti�cation. Support for these types of messages is necessary to avoid ow control
and protocol overhead.

1.3 Background

Portals were originally designed for and implemented on the nCube machine as part of the SUNMOS (San-
dia/UNM OS) [6] and Puma [11] lightweight kernel development projects. Portals went through two design
phases, the latter of which is used on the 4500-node Intel TeraFLOPS machine [10]. Portals have been very
successful in meeting the needs of such a large machine, not only as a layer for a high-performance MPI im-
plementation [2], but also for implementing the scalable run-time environment and parallel I/O capabilities
of the machine.

The second generation Portals implementation was designed to take full advantage of the hardware
architecture of large MPP machines. However, e�orts to implement this same design on commodity cluster
technology identi�ed several limitations, due to the di�erences in network hardware as well as to shortcomings
in the design of Portals.

1.4 Scalability

The primary goal in the design of Portals is scalability. Portals are designed speci�cally for an implementation
capable of supporting a parallel job running on ten thousand nodes. Performance is critical only in terms
of scalability. That is, the level of message passing performance is characterized by how far it allows an
application to scale and not by how it performs in a two-node ping-pong benchmark.

Portals are designed to allow for scalability, not to guarantee it. Portals cannot overcome the shortcomings
of a poorly designed application program. Applications that have inherent scalability limitations, either
through design or implementation, will not be transformed by Portals into scalable applications. Scalability
must be addressed at all levels. Portals do not inhibit scalability, but do not guarantee it either.

To support scalability, the Portals interface maintains a minimal amount of state. Portals provide reliable,
ordered delivery of messages between pairs of processes. They are connectionless: a process is not required
to explicitly establish a point-to-point connection with another process in order to communicate. Moreover,
all bu�ers used in the transmission of messages are maintained in user space. The target process determines
how to respond to incoming messages, and messages for which there are no bu�ers are discarded.

1.5 Communication Model

Portals combine the characteristics of both one-side and two-sided communication. They de�ne a \matching
put" operation and a \matching get" operation. The destination of a put (or send) is not an explicit
address; instead, each message contains a set of match bits that allow the receiver to determine where

9

incoming messages should be placed. This exibility allows Portals to support both traditional one-sided
operations and two-sided send/receive operations.

Portals allows the target to determine whether incoming messages are acceptable. A target process can
choose to accept message operations from any speci�c process or can choose to ignore message operations
from any speci�c process.

1.6 Zero Copy, OS Bypass and Application Bypass

In traditional system architectures, network packets arrive at the network interface card (NIC), are passed
through one or more protocol layers in the operating system, and eventually copied into the address space of
the application. As network bandwidth began to approach memory copy rates, reduction of memory copies
became a critical concern. This concern lead to the development of zero-copy message passing protocols in
which message copies are eliminated or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an interrupt for the CPU when a message arrives from
the network. The interrupt handler then controls the transfer of the incoming message into the address space
of the appropriate application. The interrupt latency, the time from the initiation of an interrupt until the
interrupt handler is running, is fairly signi�cant. To avoid this cost, some modern NICs have processors that
can be programmed to implement part of a message passing protocol. Given a properly designed protocol,
it is possible to program the NIC to control the transfer of incoming messages, without needing to interrupt
the CPU. Because this strategy does not need to involve the OS on every message transfer, it is frequently
called \OS Bypass." ST [12], VIA [3], FM [5], GM [9], and Portals are examples of OS Bypass protocols.

Many protocols that support OS Bypass still require that the application actively participate in the
protocol to ensure progress. As an example, the long message protocol of PM requires that the application
receive and reply to a request to put or get a long message. This complicates the runtime environment,
requiring a thread to process incoming requests, and signi�cantly increases the latency required to initiate
a long message protocol. The Portals message passing protocol does not require activity on the part of the
application to ensure progress. We use the term \Application Bypass" to refer to this aspect of the Portals
protocol.

2 An Overview of the Portals API

In this section, we give a conceptual overview of the Portals API. The goal is to provide a context for
understanding the detailed description of the API presented in the next section.

2.1 Data Movement

A portal represents an opening in the address space of a process. Other processes can use a portal to read
(get) or write (put) the memory associated with the portal. Every data movement operation involves two
processes, the initiator and the target. The initiator is the process that initiates the data movement
operation. The target is the process that responds to the operation by either accepting the data for a put
operation, or replying with the data for a get operation.

In this discussion, activities attributed to a process may refer to activities that are actually performed by
the process or on behalf of the process. The inclusiveness of our terminology is important in the context of
application bypass. In particular, when we note that the target sends a reply in the case of a get operation,
it is possible that reply will be generated by another component in the system, bypassing the application.

Figures 1 and 2 present graphical interpretations of the Portal data movement operations: put and get.
In the case of a put operation, the initiator sends a put request message containing the data to the target.
The target translates the portal addressing information in the request using its local portal structures. When
the request has been processed, the target optionally sends an acknowledgement message.

In the case of a get operation, the initiator sends a get request to the target. As with the put operation,
the target translates the portal addressing information in the request using its local portal structures. Once
it has translated the portal addressing information, the target sends a reply that includes the requested data.

10

Transmission
Data

Translation

Optional
Acknowledgement

Portal

TargetInitiator

Figure 1: Portal Put (Send)

Translation
Portal

Transmission
Data

Request

Initiator Target

Figure 2: Portal Get

We should note that portal address translations are only performed on nodes that respond to opera-
tions initiated by other nodes. Acknowledgements and replies to get operations bypass the portals address
translation structures.

2.2 Portal Addressing

One-sided data movement models (e.g., shmem [4], ST [12], MPI-2 [8]) typically use a triple to address
memory on a remote node. This triple consists of a process id, memory bu�er id, and o�set. The process id
identi�es the target process, the memory bu�er id speci�es the region of memory to be used for the operation,
and the o�set speci�es an o�set within the memory bu�er.

In addition to the standard address components (process id, memory bu�er id, and o�set), a portal address
includes a set of match bits. This addressing model is appropriate for supporting one-sided operations as
well as traditional two-sided message passing operations. Speci�cally, the Portals API provides the exibility

needed for an eÆcient implementation of MPI-1, which de�nes two-sided operations with one-sided semantics.
Figure 3 presents a graphical representation of the structures used by a target in the interpretation of a

portal address. The process id is used to route the message to the appropriate node and is not reected in
this diagram. The memory bu�er id, called the portal id, is used as an index into the portal table. Each
element of the portals table identi�es a match list. Each element of the match list speci�es two bit patterns:
a set of \don't care" bits, and a set of \must match" bits. In addition to the two sets of match bits, each
match list element has a list of memory descriptors. Each memory descriptor identi�es a memory region
and an optional event queue. The memory region speci�es the memory to be used in the operation and the
event queue is used to record information about these operations.

Figure 4 illustrates the steps involved in translating a portal address, starting from the �rst element in a
match list. If the match criteria speci�ed in the match list entry are met and the �rst entry in the memory
descriptor list accepts the operation1, the operation (put or get) is performed using the memory region

1Memory descriptors can reject operations because the threshold has been exceeded or due to insuÆcient space in the

memory region, see Section 3.7

11

Memory
Descriptor

List
Memory
Region

Match List

Event Queue

Library Space Application Space

Portal Table

Figure 3: Portal Addressing Structures

speci�ed in the memory descriptor. (Note, while the match list is searched for a matching entry, only the
�rst element in the memory descriptor list is considered for the operation.) If the memory descriptor speci�es
that it is to be unlinked after a successful operation, it is unlinked from the list of memory descriptors. Next,
if the memory descriptor is unlinked and this empties the memory descriptor list, the match entry will also be
unlinked if its unlink ag has been set. Finally, if there is an event queue speci�ed in the memory descriptor,
the operation is logged in the event queue.

Match Entry
Unlink

Unlink
Memory Desc

Get Next
Match Entry

Message
Discard Increment

Drop Count

no

Entry

Match?

Accepts?

no

yes

yes

Operation
Perform

First MD

noEvent

Queue?

yes

noMD Empty &
Unlink ME

noUnlink

MD?

yes

Record
Event

yes

yes

More
Match
Entries?

no

Exit

Figure 4: Portals Address Translation

If the match criteria speci�ed in the match list entry are not met or the memory descriptor associated
with the match list entry rejects the operation, the address translation continues with the next match list
entry. If the end of the match list has been reached, the address translation is aborted and the incoming
requested is discarded.

2.3 Access Control

A process can control access to its portals using an access control list. Each entry in the access control list
speci�es a process id and a portal table index. The access control list is actually an array of entries. Each
incoming request includes an index into the access control list (i.e., a \cookie" or hint). If the id of the
process issuing the request doesn't match the id speci�ed in the access control list entry or the portal table
index speci�ed in the request doesn't match the portal table index speci�ed in the access control list entry,
the request is rejected.

12

Process identi�ers and portal table indexes may include wildcard values to increase the exibility of this
mechanism. When the access control list is initialized, the entry with index zero enables access to all portals
for all processes in the same application and the entry with index one enables access to all portals for all
system processes. The remaining entries are set to disable all other access.

Two aspects of this design merit further discussion. First, the model assumes that the information in a
message header, the sender's id in particular, is trustworthy. In most contexts, we assume that the entity
that constructs the header is trustworthy; however, using cryptographic techniques, we could easily devise a
protocol that would ensure the authenticity of the sender.

Second, because the access check is performed by the receiver, it is possible that a malicious process will
generate thousands of messages that will be denied by the receiver. This could saturate the network and/or
the receiver, resulting in a denial of service attack. Moving the check to the sender using capabilities, would
remove the potential for this form of attack. However, the solution introduces the complexities of capability
management (exchange of capabilities, revocation, protections, etc).

3 The Portals API

3.1 Naming Conventions

The Portals API de�nes two types of entities: functions and types. Function always start with Ptl and use
mixed upper and lower case. When used in the body of this report, function names appear in italic face, e.g.,
PtlInit. The functions associated with an object type will have names that start with Ptl, followed by the
two letter object type code shown in Table 1. As an example, the function PtlEQAlloc allocates resources
for an event queue.

Table 1: Object Type Codes

xx Name Section

EQ Event Queue 3.8

MD Memory Descriptor 3.7

ME Match Entry 3.6

NI Network Interface 3.5

Type names use lower case with underscores to separate words. Each type name starts with ptl_ and ends
with _t. When used in the body of this report, type names appear in a �xed font, e.g., ptl_match_bits_t.

Names for constants use upper case with underscores to separate words. Each constant name starts with
PTL_. When used in the body of this report, type names appear in a �xed font, e.g., PTL_OK.

3.2 Base Types

The Portals API de�nes a variety of base types. These types represent a simple renaming of the base types
provided by the C programming language. In most cases these new type names have been introduced to
improve type safety and to avoid issues arising from di�erences in representation sizes (e.g., 16-bit or 32-bit
integers).

3.2.1 Sizes

The type ptl_size_t is an unsigned integral type used for representing sizes.

3.2.2 Handles

Objects maintained by the API are accessed through handles. Handle types have names of the form
ptl_handle_xx_t, where xx is one of the two letter object type codes shown in Table 1. For example,
the type ptl_handle_ni_t is used for network interface handles.

13

Each type of object is given a unique handle type to enhance type checking. The type, ptl_handle_any_t,
can be used when a generic handle is needed. Every handle value can be converted into a value of type
ptl_handle_any_t without loss of information.

Handles are not simple values. Every portals object is associated with a speci�c network interface and
an identi�er for this interface (along with an object identi�er) is part of the handle for the object.

3.2.3 Indexes

The types ptl_pt_index_t and ptl_ac_index_t are integral types used for representing portal table indexes
and access control tables indexes, respectively.

3.2.4 Match Bits

The type ptl_match_bits_t is capable of holding unsigned 64-bit integer values.

3.2.5 Network Interfaces

The type ptl_interface_t is an integral type used for identifying di�erent network interfaces. Users will
need to consult the local documentation to determine appropriate values for the interfaces available. The
special value PTL_IFACE_DEFAULT identi�es the default interface.

3.2.6 Identi�ers

The type ptl_id_t is an integral type used for representing group ids, node ids, process ids, and rank ids.

3.2.7 Status Registers

Each network interface maintains an array of status registers that can be accessed using the PtlNIStatus

function (see Section 3.5.4). The type ptl_sr_index_t de�nes the types of indexes that can be used to
access the status registers. The only index de�ned for all implementations is PTL_SR_DROP_COUNT which
identi�es the status register that counts the dropped requests for the interface. Other indexes (and registers)
may be de�ned by the implementation.

The type ptl_sr_value_t de�nes the types of values held in status registers. This is a signed integer
type. The size is implementation dependent, but must be at least 32 bits.

3.3 Initialization and Cleanup

The Portals API includes a function, PtlInit, to initialize the library and a function, PtlFini, to cleanup after
the application is done using the library.

3.3.1 PtlInit

int PtlInit(void);

The PtlInit function initializes the Portals library. This function should be called by all processes in an
application before calling any of the functions de�ned by the Portal API. This function should be called once
and only once during initialization by each process in a parallel job.

Return Codes

PTL_OK Indicates success.

PTL_FAIL Indicates an error during initialization.

Implementation Notes

This operation may be implemented as a collective operation involving all of the processes in a group.

14

3.3.2 PtlFini

void PtlFini(void);

The PtlFini function cleans up after the Portals library is no longer needed by a process. After this function
is called, calls to any of the functions de�ned by the Portal API or use of the structures set up by the Portals
API will result in unde�ned behavior. This function should be called once and only once during termination
by each process in a parallel job. Typically, this function will be called in the exit sequence of each process.

3.4 Process Identi�cation

Processes that use the Portals API, can be identi�ed using a node id and process id. Every node in the
computing system has a unique node identi�er and every process running on a node has a unique process
identi�er. As such, any process in the computing system can be identi�ed by its node id and process id.
Processes can also be identi�ed using a group id and rank id. When a portals job is loaded, it is given a
unique group identi�er. In addition, each process in the job is assigned a unique rank id starting at zero.

The Portals API de�nes a type, ptl_process_id_t for representing process ids using either or both of
the schemes, a function, PtlGetId, which can be used to obtain the id of the current process, and a function,
PtlTransId, to translate addresses between the two schemes.

3.4.1 The Process Id Type

typedef enum { PTL_ADDR_NID, PTL_ADDR_GID, PTL_ADDR_BOTH } ptl_addr_kind_t;

typedef struct {

ptl_addr_kind_t addr_kind; /* kind of address pair */

ptl_id_t nid, pid; /* node id, process id */

ptl_id_t gid, rid; /* group id, rank id */

} ptl_process_id_t;

The ptl_process_id_t type uses a tag and up to four identi�ers to represent a process id. Whenever a
process id is �lled in by the interface (e.g., by PtlGetId or when an event is recorded), the addr_kindmember
is set to PTL_ADDR_BOTH, and all four of the four remaining members will be set to the appropriate values.
When a process id is passed to an operation in the Portals API (e.g., PtlGetId or PtlGet), the addr_kind

member must be PTL_ADDR_NID or PTL_ADDR_GID and the nid and pid or gid and rid members must be
�lled in, respectively.

3.4.2 PtlGetId

int PtlGetId(ptl_process_id_t* id, ptl_id_t* gsize);

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that id or gsize is not a legal address.

Arguments

id output On successful return, this location will hold the id for the calling process.

gsize output On successful return, this location will hold the number of processes in the
process group for this process.

Implementation Notes

Notice that process identi�ers are independent of the network interface(s) used by the process.

15

3.4.3 PtlTransId

int PtlTransId(ptl_process_id_t* id);

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_SEGV Indicates that id is not a legal address.

PTL_ADDR_UNKNOWN Indicates that the address could not be translated.

Arguments

id input A pointer to the process address to be translated. This address should be
expressed using nid, pid or gid, rid addressing, i.e., addr_kind should be
PTL_ADDR_NID or PTL_ADDR_GID.

id output On successful return, this location will hold a process address with all four
address members �lled in, i.e., addr_kind will be PTL_ADDR_BOTH.

Implementation Notes

This operation should be implemented as a local operation. That is, the API should not query other nodes
to determine the translation for a process address. As a minimum, the API should be able to translate any
addresses for processes in the same group as the calling process. Other translations can be provided at the
discretion of the implementor. For example, an implementation may maintain a cache of recent addresses
that it has seen. (Every incoming message includes all four addresses for the sending process.)

3.5 Network Interfaces

The Portals API supports the use of multiple network interfaces. However, each interface is treated as
an independent entity. Combining interfaces (e.g., \bonding" to create a higher bandwidth connection)
must be implemented by the application or embedded in the underlying network. Interfaces are treated as
independent entities to make it easier to cache information on individual network interface cards.

Once initialized, each interface provides a portal table, an access control table, and a collection of status
registers. See Section 3.6 for a discussion of updating portal table entries using the PtlMEAttach function.
See Section 3.9 for a discussion of the initialization and updating of entries in the access control table. See
Section 3.5.4 for a discussion of the PtlNIStatus function which can be used to determine the value of a
status register.

Every other type of Portal object (e.g., memory descriptor, event queue, or match entry) is associated
with a speci�c network interface. The association to a network interface is established when the object is
created and is encoded in the handle for the object.

Each network interface is initialized and shutdown independently. The initialization routine, PtlNIInit,
returns a handle for an interface object which is used in all subsequent portal operations. The PtlNIFini
function is used to shutdown an interface and release any resources that are associated with the interface.

The Portals API also de�nes the PtlNIStatus function to query the status registers for a network interface,
the PtlNIDist function to determine the \distance" to another process, and the PtlNIHandle function to
determine the network interface that an object is associated with.

3.5.1 PtlNIInit

int PtlNIInit(ptl_interface_t interface,

ptl_pt_index_t ptl_size,

ptl_ac_index_t acl_size,

ptl_handle_ni_t* handle);

16

The PtlNIInit function is used to initialized the Portals API for a network interface. This function must be
called before any other operations that apply to the interface. It is an error to initialize a network interface
more than once in the same process.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INIT_DUP Indicates a duplicate initialization of interface.

PTL_INIT_INV Indicates that interface is not a valid network interface.

PTL_NOSPACE Indicates that there is insuÆcient memory to initialize the interface.

PTL_INV_PSIZE Indicates that ptl_size is invalid.

PTL_INV_ASIZE Indicates that acl_size is invalid.

PTL_SEGV Indicates that handle is not a legal address.

Arguments

interface input Identi�es the network interface to be initialized. (See section 3.2.5 for a
discussion of values used to identify network interfaces.)

ptl_size input Speci�es the number of entries in the portal table for this interface.

acl_size input Speci�es the size of the access control list for this interface. (See section 3.9
for more information about access control lists.)

handle output On successful return, this location will hold a handle for the interface.

Implementation Notes

The initialization routine is a local operation and should not involve communication with any other nodes.

3.5.2 PtlNIFini

int PtlNIFini(ptl_handle_ni_t interface);

The PtlNIFini function is used to release the resources allocated for a network interface. Once the PtlNIFini
operation has been started, the results of pending API operations (e.g., operations initiated by another
thread) for this interface are unde�ned. Similarly, the e�ects of incoming operations (puts and gets) or
return values (acknowledgements and replies) for this interface are unde�ned.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid network interface handle.

Arguments

interface input A handle for the interface to shutdown.

3.5.3 PtlNIBarrier

int PtlNIStatus(ptl_handle_ni_t interface);

The PtlNIBarrier function blocks the calling process until all processes in the process group have invoked
the PtlNIBarrier function for the speci�ed interface.

17

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid network interface handle.

Arguments

interface input A handle for the interface to use.

3.5.4 PtlNIStatus

int PtlNIStatus(ptl_handle_ni_t interface,

ptl_sr_index_t register,

ptl_sr_value_t* status);

The PtlNIStatus function returns the value of a status register for the speci�ed interface. (See section 3.2.7
for more information on status register indexes and status register values.)

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid network interface handle.

PTL_INV_SR_INDX Indicates that register is not a valid status register.

PTL_SEGV Indicates that status is not a legal address.

Arguments

interface input A handle for the interface to use.
register input An index for the status register to read.
status output On successful return, this location will hold the current value of the status

register.

Implementation Notes

The only status register that must be de�ned is a drop count register (PTL_SR_DROP_COUNT). Implementations

may de�ne additional status registers. Identi�ers for the indexes associated with these registers should start
with the pre�x PTL_SR_.

3.5.5 PtlNIDist

int PtlNIDist(ptl_handle_ni_t interface,

ptl_process_id_t process,

double* distance);

The PtlNIDist function returns the distance to another process using the speci�ed interface. Distances are
only de�ned relative to an interface. Distance comparisons between di�erent interfaces on the same node
may be meaningless.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid network interface handle.

PTL_INV_PROC Indicates that process is not a valid process identi�er.

PTL_SEGV Indicates that distance is not a legal address.

18

Arguments

interface input A handle for the interface to use.
process input An identi�er for the process whose distance is being requested.

distance output On successful return, this location will hold the distance to the remote process.

Implementation Notes

This function should return a static measure of distance. Examples include minimum latency, the inverse of
available bandwidth, or the number of switches between the two endpoints.

3.5.6 PtlNIHandle

int PtlNIHandle(ptl_handle_any_t handle,

ptl_handle_ni_t* interface);

The PtlNIHandle function returns a handle for the network interface that the object identi�ed by handle

is associated with. If the object identi�ed by handle is a network interface, this function returns the same

value it is passed.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_HANDLE Indicates that handle is not a valid handle.

PTL_SEGV Indicates that interface is not a legal address.

Arguments

handle input A handle for the object.
interface output On successful return, this location will hold a handle for the network interface

associated with handle.

Implementation Notes

Every handle should encode the network interface and the object id relative to this handle. Both are
presumably encoded using integer values.

3.6 Match Entries and Match Lists

A match list is a chain of match entries. Each match entry includes a list of memory descriptors and a set of
match criteria. The match criteria can be used to reject incoming requests based on process id and/or the
match bits provided in the request. A match list is created using the PtlMEAttach function which creates
a match list consisting of a single match entry, attaches the match list to the speci�ed portal index, and
returns a handle for the match entry. Match entries can be dynamically inserted and removed from a match
list using the PtlMEInsert and PtlMEUnlink functions.

3.6.1 PtlMEAttach

typedef enum { PTL_RETAIN, PTL_UNLINK } ptl_unlink_t;

int PtlMEAttach(ptl_handle_ni_t interface,

ptl_pt_index_t index,

ptl_process_id_t matchid,

ptl_match_bits_t match_bits,

ptl_match_bits_t ignorebits,

19

ptl_unlink_t unlink,

ptl_handle_me_t* handle);

Values of the type ptl_unlink_t are used to control whether an item is unlinked from a list. The value
PTL_UNLINK enables unlinking. The value PTL_RETAIN disables unlinking.

The PtlMEAttach function creates a match list consisting of a single entry and attaches this list to the
portal table for interface. If the portal table already has a match list attached to the speci�ed index, the
existing list (including any attached memory descriptor lists) is destroyed and the newly created list is used
in its place.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_PTINDEX Indicates that index is not a valid portal table index.

PTL_INV_PROC Indicates that matchid is not a valid process identi�er.

PTL_NOSPACE Indicates that there is insuÆcient memory to allocate the match entry.

PTL_SEGV Indicates that handle is not a legal address.

Arguments

interface input A handle for the interface to use.

index input The portal table index where the match list should be attached.
matchid input Speci�es the match criteria for the process id of the requestor. The constant

PTL_ID_ANY can be used to wildcard any of the ids in the ptl_process_id_t
structure.

match_bits,

ignorebits

input Specify the match criteria to apply to the match bits in the incoming request.
The ignorebits are used to mask out insigni�cant bits in the incoming
match bits. The resulting bits are then compared to the match entry's match
bits to determine if the incoming request meets the match criteria.

unlink input Indicates the match list entry should be unlinked when the last memory
descriptor associated with this match entry is unlinked. (Note, the check for
unlinking a match entry only occurs when a memory descriptor is unlinked
and this leaves the memory descriptor list empty.)

handle output On successful return, this location will hold a handle for the newly created
match entry.

3.6.2 PtlMEInsert

typedef enum { PTL_INS_BEFORE, PTL_INS_AFTER } ptl_ins_pos_t;

int PtlMEInsert(ptl_process_id_t matchid,

ptl_match_bits_t match_bits,

ptl_match_bits_t ignorebits,

ptl_unlink_t unlink,

ptl_ins_pos_t position,

ptl_handle_me_t current,

ptl_handle_me_t* handle);

Values of the type ptl_ins_pos_t are used to control where a new item is inserted in a list. The value
PTL_INS_BEFORE is used to insert the new item before the current item. The value PTL_INS_AFTER is used
to insert the new item after the current item.

The PtlMEInsert function creates a new match entry and inserts this entry into the match list containing
current.

20

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_PROC Indicates that matchid is not a valid process identi�er.

PTL_INV_ME Indicates that current is not a valid match entry handle.

PTL_ML_TOOLONG Indicates that the resulting match list is too long. The maximum length for a match
list is de�ned by the interface.

PTL_NOSPACE Indicates that there is insuÆcient memory to allocate the match entry.

PTL_SEGV Indicates that handle is not a legal address.

Arguments

matchid,

match_bits,

ignorebits,

unlink

input See the discussion for PtlMEAttach.

position input Indicates whether the new match entry should be inserted before or after the
current entry.

current input A handle for a match entry. The new match entry will be inserted
immediately before or immediately after this match entry.

handle input See the discussion for PtlMEAttach.

3.6.3 PtlMEUnlink

int PtlMEUnlink(ptl_handle_me_t entry);

The PtlMEUnlink function can be used to unlink a match entry from a match list. This operation also
releases any resources associated with the match entry (including the list of associated memory descriptors).
It is an error to use the match entry handle after calling PtlMEUnlink.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_ME Indicates that entry is not a valid match entry handle.

Arguments

entry input A handle for the match entry to be unlinked.

3.7 Memory Descriptors

A memory descriptor contains information about a region of an application process' memory and an event
queue where information about the operations performed on the memory descriptor are recorded. The Portals
API provides three operations to create memory descriptors: PtlMDAttach, PtlMEInsert, and PtlMEBind ;
an operation to update a memory descriptor, PtlMDUpdate; and an operation to unlink and release the
resources associated with a memory descriptor, PtlMDUnlink.

3.7.1 The Memory Descriptor Type

typedef struct {

void* start;

ptl_size_t length;

int threshold;

21

unsigned int options;

void* user_ptr;

ptl_handle_eq_t eventq;

} ptl_md_t;

The ptl_md_t type de�nes the application view of a memory descriptor. Values of this type are used to
initialize and update the memory descriptors.

Members

start, length Specify the memory region associated with the memory descriptor. The startmember
speci�es the starting address for the memory region and the length member speci-
�es the length of the region. The startmember can be NULL provided that the
length member is zero. (Zero length bu�ers are useful to record events.) There are
no alignment restrictions on the starting address or the length of the region; although,
unaligned messages may be slower (i.e., lower bandwidth and/or longer latency) on
some implementations.

threshold Speci�es the maximum number of remote put and get operations that can be performed
on the memory descriptor. In the usual case, the threshold value is decremented for
each put or get operation on the memory descriptor. When the threshold value is zero,
the memory descriptor is inactive, and does not respond to operations. A memory de-
scriptor can have an initial threshold value of zero to allow for manipulation of an inac-
tive memory descriptor by the local process. A threshold value of PTL_MD_THRESH_INF
indicates that there is no bound on the number of operations that may be applied to
a memory descriptor. Note that local operations (e.g., PtlMDUpdate) and reply oper-
ations not applied to the threshold count.

options Speci�es the behavior of the memory descriptor. There are �ve options that can be
selected: enable put operations (yes or no), enable get operations (yes or no), o�set
management (local or remote), message truncation (yes or no), and acknowledgement
(yes or no). Values for this argument can be constructed using a bitwise or of the
following values:

PTL_MD_OP_PUT Speci�es that the memory descriptor will respond to
put operations. By default, memory descriptors reject
put operations.

PTL_MD_OP_GET Speci�es that the memory descriptor will respond to
get operations. By default, memory descriptors reject
get operations.

PTL_MD_MANAGE_REMOTE Speci�es that the o�set used in accessing the mem-
ory region is provided by the incoming request. By
default, the o�set is maintained locally. When the o�-
set is maintained locally, the o�set is incremented by
the length of the request so that the next operation
will access the next part of the memory region.

PTL_MD_TRUNCATE Speci�es that the length provided in the incoming re-
quest can be reduced to match the memory available
in the region. (The memory available in a memory re-
gion is determined by subtracting the o�set from the
length of the memory region.) By default, if the length
in the incoming operation is greater than the amount
of memory available, the operation is rejected.

PTL_MD_ACK_DISABLE Speci�es that an acknowledgement should not be sent
for incoming put operations, even if requested. By
default, acknowledgements are sent for put operations
that request an acknowledgement. Acknowledgements

22

are never sent for get operations. The value sent in
the reply serves as an implicit acknowledgement.

Note: It is not considered an error to have a memory descriptor that does not respond
to either put or get operations: Every memory descriptor responds to reply operations.
Nor is it considered an error to have a memory descriptor that responds to both put

and get operations.

user_ptr A user-speci�ed value that is associated with the memory descriptor. The value does
not need to be a pointer, but must �t in the space used by a pointer. This value (along
with other values) is recorded in events associated with operations on this memory
descriptor.2

eventq A handle for the event queue used to log the operations performed on the memo-
ry region. If this argument is PTl_EQ_NONE, operations performed on this memory
descriptor are not logged.

3.7.2 PtlMDAttach

int PtlMDAttach(ptl_handle_me_t match,

ptl_md_t mem_desc,

ptl_unlink_t unlink,

ptl_handle_md_t* handle);

The PtlMDAttach operation is used to create a memory descriptor list consisting of a single memory de-
scriptor and attach this list to a match entry. If this match entry already has a list of memory descriptors,
the existing list is destroyed and the newly created list is used in its place.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_ME Indicates that match is not a valid match entry handle.

PTL_ILL_MD Indicates that mem_desc is not a legal memory descriptor. This may happen because
the memory region de�ned in mem_desc is invalid or because the network interface
associated with the eventq in mem_desc is not the same as the network interface
associated with match.

PTL_NOSPACE Indicates that there is insuÆcient memory to allocate the memory descriptor.

PTL_SEGV Indicates that handle is not a legal address.

2Tying the memory descriptor to a user-de�ned value can be useful when multiple memory descriptor share the same event

queue or when the memory descriptor needs to be associated with a data structure maintained by the application. For example,

an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct association allows for

processing of memory descriptor's by the MPI implementation without a table lookup or a search for the appropriate MPI

Request.

23

Arguments

match input A handle for the match entry that the memory descriptor will be associated
with.

mem_desc input Provides initial values for the application visible parts of a memory descriptor.
Other than its use for initialization, there is no linkage between this structure
and the memory descriptor maintained by the API.

unlink input A ag to indicate whether the memory descriptor is unlinked when its
threshold drops to zero. (Note, the check for unlinking a memory descriptor
only occurs when the threshold transitions from one to zero when responding
to a remote get or put operation. If the threshold is set to zero during
initialization or using PtlMDUpdate, the memory descriptor is not unlinked.)

handle output On successful return, this location will hold a handle for the newly created
memory descriptor. The handle argument can be NULL, in which case the
handle will not be returned3.

3.7.3 PtlMDInsert

int PtlMDInsert(ptl_md_t mem_desc,

ptl_unlink_t unlink,

ptl_ins_pos_t position,

ptl_handle_md_t current,

ptl_handle_md_t* handle);

The PtlMDInsert creates a new memory descriptor and links it into the list containing current.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_ME Indicates that match is not a valid match entry handle.

PTL_ILL_MD Indicates that mem_desc is not a legal memory descriptor (e.g., the memory region
speci�ed by the memory descriptor may be invalid).

PTL_INV_MD Indicates that current is not a valid memory descriptor handle.

PTL_NOSPACE Indicates that there is insuÆcient memory to allocate the memory descriptor.

PTL_SEGV Indicates that handle is not a legal address.

Arguments

mem_desc,

unlink

input See the discussion for PtlMDAttach.

position input Indicates whether the new memory descriptor should be inserted before or
after the current entry.

current input A handle for a memory descriptor. The new memory descriptor will be
inserted immediately before or immediately after this memory descriptor.

handle output See the discussion for PtlMDAttach.

3.7.4 PtlMDBind

int PtlMDAttach(ptl_handle_ni_t interface,

ptl_md_t mem_desc,

ptl_handle_md_t* handle);

The PtlMDBind operation is used to create a \free oating" memory descriptor, i.e., a memory descriptor
that is not part of the memory descriptor list for a match entry.

24

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid match entry handle.

PTL_ILL_MD Indicates that mem_desc is not a legal memory descriptor. This may happen because
the memory region de�ned in mem_desc is invalid or because the network interface
associated with the eventq in mem_desc is not the same as the network interface,
interface.

PTL_NOSPACE Indicates that there is insuÆcient memory to allocate the memory descriptor.

PTL_SEGV Indicates that handle is not a legal address.

Arguments

interface input A handle for the network interface that the memory descriptor will be
associated with.

mem_desc input Provides initial values for the application visible parts of a memory descriptor.
Other than its use for initialization, there is no linkage between this structure
and the memory descriptor maintained by the API.

handle output On successful return, this location will hold a handle for the newly created
memory descriptor. The handle argument must be a valid address and cannot
be NULL.

3.7.5 PtlMDUnlink

int PtlMDUnlink(ptl_handle_md_t mem_desc);

The PtlMDUnlink function unlinks the memory descriptor from any memory descriptor list it may be linked
to and releases the resources associated with a memory descriptor. (This function does not free the memory
region associated with the memory descriptor.)

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_MD Indicates that mem_desc is not a valid memory descriptor handle.

Arguments

mem_desc input A handle for the memory descriptor to be released.

3.7.6 PtlMDUpdate

int PtlMDUpdate(ptl_handle_md_t mem_desc,

ptl_md_t* old,

ptl_md_t* new,

ptl_handle_eq_t testq);

The PtlMDUpdate function provides a conditional, atomic update operation for memory descriptors. If old
is not NULL, the current value of the memory descriptor identi�ed by mem_desc is recorded in the location
identi�ed by old. If new is not NULL the memory descriptor identi�ed by handle will be updated to reect
the values in the structure pointed to by new if testq has the value PTL_EQ_NONE or if the event queue
identi�ed by testq is empty.

25

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_NOUPDATE Indicates that the update was not performed because testq was not empty.

PTL_INV_MD Indicates that mem_desc is not a valid memory descriptor handle.

PTL_ILL_MD Indicates that the value pointed to by new is not a legal memory descriptor (e.g., the
memory region speci�ed by the memory descriptor may be invalid).

PTL_INV_EQ Indicates that testq is not a valid event queue handle.

PTL_SEGV Indicates that new or old is not a legal address.

Arguments

mem_desc input A handle for the memory descriptor to update.
old output If old is not the value NULL, the current value of the memory descriptor will

be stored in the location identi�ed by old.
new input If new is not the value NULL, this argument provides the new values for the

memory descriptor, if the update is performed.
testq input A handle for an event queue used to predicate the update. If testq is equal

to PTL_EQ_NONE, the update is performed unconditionally. Otherwise, the
update is performed if and only if testq is empty. If the update is not
performed, the function returns the value PTL_NOUPDATE. (Note, the testq
argument does not need to be the same as the event queue associated with the
memory descriptor.)

The conditional update can be used to ensure that the memory descriptor has not changed between the
time it was examined and the time it is updated. In particular, it is needed to support an MPI implementation
where the activity of searching an unexpected message queue and posting a receive must be atomic.

3.8 Events and Event Queues

Event queues are used to log operations performed on memory descriptors. They can also be used to hold
acknowledgements for completed put operations and to note when the data speci�ed in a put operation has
been sent (i.e., when it is safe to reuse the bu�er that holds this data). Multiple memory descriptors can
share a single event queue.

In addition to the ptl_handle_eq_t type, the Portals API de�nes two types associated with events: The
ptl_event_kind_t type de�nes the kinds of events that can be stored in an event queue. The ptl_event_t
type de�nes a structure that holds the information associated with an event.

The Portals API also provides �ve functions for dealing with event queues: The PtlEQAlloc function
is used to allocate the API resources needed for an event queue, the PtlEQFree function is used to release
these resources, the PtlEQCount function can be used to obtain the number of events in an event queue, the

PtlEQGet function can be used to get the next event from an event queue, and the PtlEQWait function can
be used to block a process (or thread) until an event queue has at least one event.

3.8.1 Kinds of Events

typedef enum {

PTL_EVENT_GET,

PTL_EVENT_PUT,

PTL_EVENT_REPLY,

PTL_EVENT_ACK,

PTL_EVENT_SENT

} ptl_event_kind_t;

The Portals API de�nes �ve types of events that can be logged in an event queue:

26

PTL_EVENT_GET A remote get operation was performed on the memory descriptor. This event is logged
after the reply has been sent by the local node. As such, the process could free the
memory descriptor once it sees this event.

PTL_EVENT_PUT A remote put operation was performed on the memory descriptor. This event is logged
after the data (if any) is written into the memory descriptor and after the acknowl-
edgement (if any) has been sent.

PTL_EVENT_REPLY A reply has been received for the memory descriptor. This event is logged after the
data (if any) from the reply has been written into the memory descriptor.

PTL_EVENT_ACK An acknowledgement was received. This event is logged when the acknowledgement is
received

PTL_EVENT_SENT An outgoing bu�er was sent (see Section 3.10.1). This event is logged after the entire
bu�er has been sent and it is safe for the application to reuse the bu�er.

3.8.2 The Event Type

typedef struct {

ptl_event_kind_t type;

ptl_process_id_t initiator;

ptl_pt_index_t portal;

ptl_match_bits_t match_bits;

ptl_size_t rlength;

ptl_size_t mlength;

ptl_size_t offset;

ptl_md_t mem_desc;

} ptl_event_t;

An event structure includes the following members:

type Indicates the type of operation that generated the event.

initiator The id of the initiator (group id, rank id).

portal The portal table index speci�ed in the request.

match_bits A copy of the match bits speci�ed in the request. See section 3.6 for more information
on match bits.

rlength The length (in bytes) speci�ed in the request.

mlength The length (in bytes) of the data that was manipulated by the operation. For trun-
cated operations, the manipulated length will be the number of bytes speci�ed by the
memory descriptor (possibly with an o�set) operation. For all other operations, the
manipulated length will be the length of the requested operation.

offset Is the displacement (in bytes) into the memory region that the operation used. The
o�set can be determined by the operation (see Section 3.10) for a remote managed
memory descriptor, or by the local memory descriptor (see Section 3.7).

mem_desc Is a copy of the memory descriptor immediately after the event has been processed.

3.8.3 PtlEQAlloc

int PtlEQAlloc(ptl_handle_ni_t interface,

ptl_size_t count,

ptl_handle_eq_t* handle);

The PtlEQAlloc function is used to build an event queue.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

27

PTL_INV_NI Indicates that interface is not a valid network interface handle.

PTL_NOSPACE Indicates that there is insuÆcient memory to allocate the event queue.

PTL_SEGV Indicates that handle is not a legal address.

Arguments

interface input A handle for the interface that the event queue will be associated with.
count input The number of events that can be stored in the event queue.

handle output On successful return, this location will hold a handle for the newly created
event queue.

3.8.4 PtlEQFree

int PtlEQFree(ptl_handle_eq_t eventq);

The PtlEQFree function releases the resources associated with an event queue. This function does not free
the memory region associated with the event queue. It is up to the user to insure that no memory descriptors
are associated with the event queue once it is freed.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_EQ Indicates that eventq is not a valid event queue handle.

Arguments

eventq input A handle for the event queue to be released.

3.8.5 PtlEQCount

int PltEQCount(ptl_handle_eq_t eventq,

ptl_size_t* count);

The PTLEQCount function can be used to discover the number events in an event queue.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_EQ Indicates that eventq is not a valid event queue handle.

PTL_SEGV Indicates that count is not a legal address.

Arguments

eventq input A handle for the event queue.
count output On successful return, this location will hold the number of events in the event

queue.

3.8.6 PtlEQGet

int PltEQGet(ptl_handle_eq_t eventq,

ptl_event_t* event);

The PTLEQGet function is a nonblocking function that can be used to get the next event in an event queue.
The event is removed from the queue.

28

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one event between this
event and the last event obtained (using PtlEQGet or PtlEQWait) from this event
queue has been dropped due to limited space in the event queue.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_EQ_EMPTY Indicates that eventq is empty.

PTL_INV_EQ Indicates that eventq is not a valid event queue handle.

PTL_SEGV Indicates that event is not a legal address.

Arguments

eventq input A handle for the event queue.

event output On successful return, this location will hold the values associated with the
next event in the event queue.

3.8.7 PtlEQWait

int PltEQWait(ptl_handle_eq_t eventq,

ptl_event_t* event);

The PTLEQWait function can be used to block the calling process (thread) until there is an event in an
event queue. This function also returns the next event in the event queue and removes this event from the
queue. This is the only blocking operation in the Portals 3.0 API.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one event between this
event and the last event obtained (using PtlEQGet or PtlEQWait) from this event
queue has been dropped due to limited space in the event queue.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_EQ Indicates that eventq is not a valid event queue handle.

PTL_SEGV Indicates that event is not a legal address. queue handle.

Arguments

eventq input A handle for the event queue to wait on. The calling process (thread) will be
blocked until eventq is not empty.

event output On successful return, this location will hold the values associated with the
next event in the event queue.

3.9 The Access Control Table

Processes can use the access control table to control which processes are allowed to perform operations on
portal table entries. Each communication interface has a portal table and an access control table. The
access control table for the default interface contains an entry at index zero that allows all members of the
same group to communicate. Entries in the access control table can be manipulated using the PtlACEntry
function.

3.9.1 PtlACEntry

int PtlACEntry(ptl_handle_ni_t interface,

ptl_ac_index_t index,

29

ptl_processid_t matchid,

ptl_pt_index_t portal);

The PtlACEntry function can be used to update an entry in the access control table for an interface.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_NI Indicates that interface is not a valid network interface handle.

PTL_AC_INV_INDEX Indicates that index is not a valid access control table index.

PTL_INV_PROC Indicates that matchid is not a valid process identi�er.

PTL_PT_INV_INDEX Indicates that portal is not a valid portal table index.

Arguments

interface input Identi�es the interface to use.

index input The index of the entry in the access control table to update.

matchid input Identi�es the process(es) that are allowed to perform operations. The value
PTL_ID_ANY can be used to wildcard either or both components of the process
identi�er.

portal input Identi�es the portal index(es) that can be used. The value PTL_PT_INDEX_ANY
can be used to wildcard the portal index.

3.10 Data Movement Operations

The Portals API provides two data movement operations: PtlPut and PtlGet.

3.10.1 PtlPut

typedef enum { PTL_ACK_REQ, PTL_NOACK_REQ } ptl_ack_req_t;

int PtlPut(ptl_handle_md_t mem_desc,

ptl_ack_req_t ack_req,

ptl_process_id_t target,

ptl_pt_index_t portal,

ptl_ac_index_t cookie,

ptl_match_bits_t match_bits,

ptl_size_t offset);

Values of the type ptl_ack_req_t are used to control whether an acknowledgement should be sent when
the operation completes (i.e., when the data has been written to a memory descriptor of the target pro-
cess). The value PTL_ACK_REQ requests an acknowledgement, the value PTL_NOACK_REQ requests that no
acknowledgement should be generated.

The PtlPut function initiates an asynchronous put operation. There are two signi�cant events associated
with a put operation: completion of the send by the local node (PTL_EVENT_SENT) and the receipt of
an acknowledgement (PTL_EVENT_ACK) indicating that the operation was accepted by the target. These
events will be logged in the event queue associated with the memory descriptor (mem_desc) used in the put
operation. Using a memory descriptor that does not have an associated event queue results in these events
being discarded. In this case, the application must have another mechanism (e.g., a higher level protocol)
for determining when it is safe to modify the memory region associated with the memory descriptor.

Return Codes

PTL_OK Indicates success.

30

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_MD Indicates that mem_desc is not a valid memory descriptor.

PTL_INV_PROC Indicates that target is not a valid process id.

Arguments

mem_desc input A handle for the memory descriptor that describes the memory to be sent. If
the memory descriptor has an event queue associated with it, it will be used
to record an event when the message has been sent (PTL_EVENT_SENT).

ack_req input Controls whether an acknowledgement event is requested. Acknowledgements
are only sent when they are requested by the initiating process and the
memory descriptor has an event queue and the target memory descriptor
enables them.

target input A process id for the target process.
portal input The index in the remote portal table.

cookie input The index into the access control table of the target process.
match_bits input The match bits to use for message selection at the target process.
offset input The o�set into the target memory descriptor (only used when the target

memory descriptor has the PTL_MD_MANAGE_REMOTE option set).

3.10.2 PtlGet

int PtlGet(ptl_handle_md_t mem_desc,

ptl_process_id_t target,

ptl_pt_index_t portal,

ptl_ac_index_t cookie,

ptl_match_bits_t match_bits,

ptl_size_t offset);

The PtlGet function initiates a remote read operation.

Return Codes

PTL_OK Indicates success.

PTL_NOINIT Indicates that the Portals API has not been successfully initialized.

PTL_INV_MD Indicates that mem_desc is not a valid memory descriptor.

PTL_INV_PROC Indicates that target is not a valid process id.

Arguments

mem_desc input A handle for the memory descriptor that describes the memory into which the
requested data will be received. The memory descriptor can have an event
queue associated with it to record events, such as when the message has been
received (PTL_EVENT_REPLY).

target input A process id for the target process.

portal input The index in the remote portal table.
cookie input The index into the access control table of the target process.

match_bits input The match bits to use for message selection at the target process.
offset input The o�set into the target memory descriptor (ignored unless the target

memory descriptor has the PTL_MD_MANAGE_REMOTE option set).

3.11 Summary

We conclude this section by summarizing the names introduced by the Portals 3.0 API. We start by sum-
marizing the names of the types introduced by the API. This is followed by a summary of the functions

31

introduced by the API. Which is followed by a summary of the function return codes. Finally, we conclude
with a summary of the other constant values introduced by the API.

Table 2 presents a summary of the types de�ned by the Portals API. The �rst column in this table gives
the type name, the second column gives a brief description of the type, the third column identi�es the section
where the type is de�ned, and the fourth column lists the functions that have arguments of this type.

Table 2: Types De�ned by the Portals 3.0 API

Name Meaning Section Functions

ptl_ac_index_t indexes for an access control table 3.2.3 PtlACEntry, PtlPut, PtlGet

ptl_ack_req_t acknowledgement request types 3.10.1 PtlPut

ptl_addr_kind_t kinds of process addresses (nid, pid or gid, rid) 3.4.1

ptl_event_kind_t kinds of events (get, put, reply, etc.) 3.8.1 PtlGetId

ptl_event_t information about events 3.8.2 PtlEQGet

ptl_handle_any_t handles for any object 3.2.2 PtlNIHandle

ptl_handle_eq_t handles for event queues 3.2.2 PtlEQAlloc, PtlEQFree,

PtlEQCount, PtlEQGet,

PtlEQWait, PtlMDUpdate

ptl_handle_md_t handles for memory descriptors 3.2.2 PtlMDAlloc, PtlMDUnlink,

PtlMDUpdate, PtlMEAttach,

PtlMEInsert, PtlPut, PtlGet

ptl_handle_me_t handles for match entries 3.2.2 PtlMEAttach, PtlMEInsert,

PtlMEUnlink

ptl_handle_ni_t handles for network interfaces 3.2.2 PtlNIInit, PtlNIFini, PtlNIStatus,

PtlNIDist, PtlEQAlloc,

PtlACEntry, PtlPut, PtlGet

ptl_id_t identi�ers (nid, pid, gid, rid) 3.2.6

ptl_ins_pos_t insertion position (before or after) 3.6.2 PtlMeInsert, PtlMDInsert

ptl_interface_t identi�ers for network interfaces 3.2.5 PtlNIInit

ptl_match_bits_t match (and ignore) bits 3.2.4 PtlMEAttach, PtlMEInsert,

PtlPut, PtlGet

ptl_md_t memory descriptors 3.7.1 PtlMDAttach, PtlMDInsert,

PtlMDUpdate

ptl_process_id_t process identi�ers 3.4.1 PtlGetId, PtlNIDist,

PtlMEAttach, PtlACEntry,

PtlPut, PtlGet

ptl_pt_index_t indexes for portal tables 3.2.3 PtlMEAttach, PtlACEntry

ptl_size_t sizes 3.2.1 PtlEQAlloc, PtlEQCount, PtlPut,

PtlGet

ptl_sr_index_t indexes for status registers 3.2.7 PtlNIStatus

ptl_sr_value_t values in status registers 3.2.7 PtlNIStatus

ptl_unlink_t unlink options 3.6.1 PtlMEAttach, PtlMEInsert,

PtlMDAttach, PtlMDInsert

Table 3 presents a summary of the functions de�ned by the Portals API. The �rst column in this table
gives the name for the function, the second column gives a brief description of the operation implemented
by the function, and the third column identi�es the section where the function is de�ned.

Table 4 summarizes the return codes used by functions de�ned by the Portals API. All of these constants
are integer values. The �rst column of this table gives the symbolic name for the constant, the second column
gives a brief description of the value, and the third column identi�es the functions that can return this value.

Table 5 summarizes the remaining constant values introduced by the Portals API. The �rst column in
this table presents the symbolic name for the constant, the second column gives a brief description of the
value, the third column identi�es the type for the value, and the fourth column identi�es the sections in
which the value is mentioned.

32

Table 3: Functions De�ned by the Portals 3.0 API

Name Operation Section

PtlACEntry update an entry in an access control table 3.9

PtlEQAlloc create an event queue 3.8

PtlEQCount get the number events in an event queue 3.8

PtlEQGet get the next event from an event queue 3.8

PtlEQFree release the resources for an event queue 3.8

PtlEQWait wait for a new event in an event queue 3.8

PtlFini shutdown the Portals API 3.3

PtlGet perform a get operation 3.10

PtlGetId get the id for the current process 3.4

PtlInit initialize the Portals API 3.3

PtlMDAttach create a memory descriptor and attach it to a match entry 3.7

PtlMDInsert create a memory descriptor and insert it in a list 3.7

PtlMDUnlink remove a memory descriptor from a list and release its resources 3.7

PtlMDUpdate update a memory descriptor 3.7

PtlMEAttach create a match entry and attach it to a portal table 3.6

PtlMEInsert create a match entry and insert it in a list 3.6

PtlMEUnlink remove a match entry from a list and release its resources 3.6

PtlNIBarrier barrier synchronization for a process group 3.5

PtlNIDist get the distance to another process 3.5

PtlNIFini shutdown a network interface 3.5

PtlNIHandle get the network interface handle for an object 3.5

PtlNIInit initialize a network interface 3.5

PtlNIStatus read a network interface status register 3.5

PtlPut perform a put operation 3.10

4 The Semantics of Message Transmission

The portals API uses four types of messages: put requests, acknowledgements, get requests, and replies. In
this section, we describe the information passed on the wire for each type of message. We also describe how
this information is used to process incoming messages.

4.1 Sending Messages

Table 6 summarizes the information that is transmitted for a put request. The �rst column provides a
descriptive name for the information, the second column provides the type for this information, the third
column identi�es the source of the information, and the fourth column provides additional notes. Most
information that is transmitted is obtained directly from the PtlPut operation. Notice that the handle
for the memory descriptor used in the PtlPut operation is transmitted even though this value cannot be
interpreted by the target. A value of anything other than PTL_MD_NONE, is interpreted as a request for an
acknowledgement.

Table 7 summarizes the information transmitted in an acknowledgement. Most of the information is
simply echoed from the put request. Notice that the initiator and target are obtained directly from the put

request, but are swapped in generating the acknowledgement. The only new piece of information in the
acknowledgement is the manipulated length which is determined as the put request is satis�ed.

Table 8 summarizes the information that is transmitted for a get request. Like the information trans-
mitted in a put request, most of the information transmitted in a get request is obtained directly from the
PtlGet operation. Unlike put requests, get requests do not include the event queue handle. In this case, the
reply is generated whenever the operation succeeds and the memory descriptor must not be unlinked until
the reply is received. As such, there is no advantage to explicitly sending the event queue handle.

Table 9 summarizes the information transmitted in a reply. Like an acknowledgement, most of the
information is simply echoed from the get request. The initiator and target are obtained directly from

33

Table 4: Function Return Codes for the Portals 3.0 API

Name Meaning Functions

PTL_AC_INV_INDEX invalid access control table index PtlACEntry

PTL_ADDR_UNKNOWN unknown process address PtlTransId

PTL_EQ_DROPPED at least one event has been dropped PtlEQGet, PtlWait

PTL_EQ_EMPTY no events available in an event queue PltEQGet

PTL_FAIL error during initialization or cleanup PtlInit, PtlFini

PTL_ILL_MD illegal memory descriptor values PtlMDAttach, PtlMDInsert, PtlMDBind,

PtlMDUpdate

PTL_INIT_DUP duplicate initialization of an interface PtlNIInit

PTL_INIT_INV initialization of an invalid interface PtlNIInit

PTL_INV_ASIZE invalid access control table size PtlNIInit

PTL_INV_EQ invalid event queue handle PtlMDUpdate, PtlEQFree, PtlEQCount,

PtlEQGet

PTL_INV_HANDLE invalid handle PtlNIHandle

PTL_INV_MD invalid memory descriptor handle PtlMDInsert, PtlMDUnlink, PtlMDUpdate

PTL_INV_ME invalid match entry handle PtlMDAttach, PtlMDInsert

PTL_INV_NI invalid network interface handle PtlNIBarrier, PtlNIDist, PtlNIFini,

PtlMDBind, PtlEQAlloc

PTL_INV_PROC invalid process identi�er PtlNIDist, PtlMEAttach, PtlMEInsert,

PtlACEntry, PtlPut, PtlGet

PTL_INV_PSIZE invalid portal table size PtlNIInit

PTL_INV_PTINDEX invalid portal table index PtlMEAttach

PTL_INV_REG invalid status register PtlNIStatus

PTL_INV_SR_INDX invalid status register index PtlNIStatus

PTL_ML_TOOLONG match list too long PtlMEInsert

PTL_NOINIT uninitialized API all, except PtlInit

PTL_NOSPACE insuÆcient memory PtlNIInit, PtlMDAttach, PtlMDInsert,

PtlMDBind, PtlEQAlloc, PtlMEAttach,

PtlMEInsert

PTL_NOUPDATE no update was performed PtlMDUpdate

PTL_OK success all

PTL_SEGV addressing violation PtlGetId, PtlTransId, PtlNIInit,

PtlNIStatus, PtlNIDist, PtlNIHandle,

PtlMEAttach, PtlMEInsert, PtlMDAttach,

PtlMDInsert, PtlMDBind, PtlMDUpdate,

PtlEQAlloc, PtlEQCount, PtlEQGet,

PtlEQWait

34

Table 5: Other Constants De�ned by the Portals 3.0 API

Name Meaning Base type Section

PTL_ACK_REQ request an acknowledgement ptl_ack_req_t 3.10.1

PTL_ADDR_BOTH nid, pid and gid, rid process address ptl_addr_kind_t 3.4.1

PTL_ADDR_GID gid, rid process address ptl_addr_kind_t 3.4.1

PTL_ADDR_NID nid, pid process address ptl_addr_kind_t 3.4.1

PTL_EQ_NONE a NULL event queue handle ptl_handle_eq_t 3.7.6

PTL_EVENT_GET get event ptl_event_kind_t 3.8.1

PTL_EVENT_PUT put event ptl_event_kind_t 3.8.1

PTL_EVENT_REPLY reply event ptl_event_kind_t 3.8.1

PTL_EVENT_ACK acknowledgement event ptl_event_kind_t 3.8.1

PTL_EVENT_SENT sent event ptl_event_kind_t 3.8.1

PTL_ID_ANY wildcard for process id �elds ptl_id_t 3.6.1

PTL_IFACE_DEFAULT default interface ptl_interface_t 3.2.5

PTL_INS_AFTER insert after ptl_ins_pos_t 3.6.2

PTL_INS_BEFORE insert before ptl_ins_pos_t 3.6.2

PTL_MD_ACK_DISABLE a ag to disable acknowledgements int 3.7.1

PTL_MD_MANAGE_REMOTE a ag to enable the use of remote o�sets int 3.7.1

PTL_MD_OP_GET a ag to enable get operations int 3.7.1

PTL_MD_OP_PUT a ag to enable put operations int 3.7.1

PTL_MD_THRESH_INF in�nite threshold for a memory descriptor int 3.7.1

PTL_MD_TRUNCATE a ag to enable truncation of a request int 3.7.1

PTL_NOACK_REQ request no acknowledgement ptl_ack_req_t 3.10.1

PTL_PT_INDEX_ANY wildcard for portal indexes ptl_pt_index_t 3.9.1

PTL_RETAIN disable unlinking ptl_unlink_t 3.6.1

PTL_SR_DROP_COUNT index for the dropped count register ptl_sr_index_t 3.2.7

PTL_UNLINK enable unlinking ptl_unlink_t 3.6.1

Information Type PtlPut argument Notes

operation int indicates a put request

initiator ptl_process_id_t local information

target ptl_process_id_t target

portal index ptl_pt_index_t portal

cookie ptl_ac_index_t cookie

match bits ptl_match_bits_t match_bits

o�set ptl_size_t offset

memory desc ptl_handle_md_t mem_desc no ack if PTL_MD_NONE

length ptl_size_t mem_desc length member

data bytes mem_desc start and length members

Table 6: Information Passed in a Put Request

Information Type Put Information Notes

operation int indicates an acknowledgement

initiator ptl_process_id_t target

target ptl_process_id_t initiator

portal index ptl_pt_index_t portal index echo

match bits ptl_match_bits_t match bits echo

o�set ptl_size_t o�set echo

memory desc ptl_handle_md_t memory desc echo

requested length ptl_size_t length echo

manipulated length ptl_size_t obtained from the operation

Table 7: Information Passed in an Acknowledgement

35

Information Type PtlGet argument Notes

operation int indicates a get operation

initiator ptl_process_id_t local information

target ptl_process_id_t target

portal index ptl_pt_index_t portal

cookie ptl_ac_index_t cookie

match bits ptl_match_bits_t match_bits

o�set ptl_size_t offset

memory desc ptl_handle_md_t mem_desc

length ptl_size_t mem_desc length member

Table 8: Information Passed in a Get Request

the get request, but are swapped in generating the acknowledgement. The only new information in the
acknowledgement are the manipulated length and the data which are determined as the get request is
satis�ed.

Information Type Put Information Notes

operation int indicates an acknowledgement

initiator ptl_process_id_t target

target ptl_process_id_t initiator

portal index ptl_pt_index_t portal index echo

match bits ptl_match_bits_t match bits echo

o�set ptl_size_t o�set echo

memory desc ptl_handle_md_t memory desc echo

requested length ptl_size_t length echo

manipulated length ptl_size_t obtained from the operation

data bytes obtained from the operation

Table 9: Information Passed in a Reply

4.2 Receiving Messages

When an incoming message arrives on a network interface, the runtime system �rst checks that the target
process identi�ed in the request is a valid process that has initialized the network interface (i.e., that the
target process has a valid portal table). If this test fails, the runtime system discards the message and
increments the dropped message count for the interface. The remainder of the processing depends on the
type of the incoming message. Put and get messages are subject to access control checks and translation
(searching a match list), while acknowledgement and reply messages bypass the access control checks and
the translation step.

Acknowledgement messages include a handle for the event queue where the event should be recorded.
Upon receipt of an acknowledgement, the runtime system only needs to con�rm that the event queue still
exists and that there is space for another event. Should the event queue no longer exist or if there is not
suÆcient space in the event queue, the message is simply discarded and the dropped message count for
the interface is incremented. Otherwise, the runtime system builds an acknowledgement event from the
information in the acknowledgement message and adds it to the event queue.

Reception of reply messages is also relatively straightforward. Each reply message includes a handle for
a memory descriptor. If this descriptor exists, it is used to receive the message. A reply message will be
dropped if the memory descriptor identi�ed in the request doesn't exist or if the event queue in the memory
descriptor has no space and is not PTL_EQ_NONE. In either of these cases, the dropped message count for the
interface is incremented. These are the only reasons for dropping reply messages. Every memory descriptor
accepts and truncates incoming reply messages, eliminating the other potential reasons for rejecting a reply
message.

36

The critical step in processing an incoming put or get request involves mapping the request to a memory
descriptor. This step starts by using the portal index in the incoming request to identify a list of match
entries. This list of match entries is searched in order until a match entry is found whose match criteria
matches the match bits in the incoming request and whose �rst memory descriptor accepts the request.

Because acknowledge and reply messages are generated in response to requests made by the process
receiving these messages, the checks performed by the runtime system for acknowledgements and replies are
minimal. In contrast, put and get messages are generated by remote processes and the checks performed for
these messages are more extensive. Incoming put or get messages may be rejected because:

� the portal index supplied in the request is not valid;

� the cookie supplied in the request is not a valid access control entry;

� the access control entry identi�ed by the cookie does not match the identi�er of the requesting process;

� the access control entry identi�ed by the access control entry does not match the portal index supplied
in the request; or

� the match bits supplied in the request do not match any of the match entries with a memory descriptor
that accepts the request.

In all cases, if the message is rejected, the incoming message is discarded and the dropped message count
for the interface is incremented.

A memory descriptor may reject an incoming request for any of the following reasons:

� the PTL_MD_PUT or PTL_MD_GET option has not been enabled and the operation is put or get, respec-
tively;

� the length speci�ed in the request is too long for the memory descriptor and the PTL_MD_TRUNCATE

option has not been enabled;

� the event queue is not PTL_EQ_NONE and there is no space for a new event.

5 Examples

In this section we present several example to illustrate expected usage patterns for the Portals 3.0 API. The

�rst example describes how to implement parallel servers using the features of the Portals 3.0 API. This
example covers the access control list and the use of remote managed o�sets. The second example presents
an approach to dealing with dropped requests. This example covers aspects of match lists and memory
descriptors. The �nal example covers message reception in MPI. This example illustrates more sophisticated
uses of matching and a procedure to update a memory descriptor.

5.1 Parallel File Servers

Figure 5 illustrates the logical structure of a parallel �le server. In this case, the parallel server consists of
four servers that stripe application data across four disks. We would like to present applications with the
illusion that the �le server is a single entity. We will assume that all of the processes that constitute the
parallel server are in a single group and that this group is unique to the parallel server.

When an application establishes a connection to the parallel �le server, it will allocate a portal and access
control list entry for communicating with the server. The access control list entry will include the portal
and match any process in the parallel �le server's group, so all of the �le server processes will have access to
the portal. The portal information and access control entry will be sent to the �le server at this time. If the
application and server need to have multiple, concurrent I/O operations, they can use additional portals or
match entries to keep the operations from interfering with one another.

When an application initiates an I/O operation, it �rst builds a memory descriptor that describes the
memory region involved in the operation. This memory descriptor will enable the appropriate operation (put
for read operations and get for write operations) and enable the use of remote o�sets (this lets the servers

37

FS0

FS3

FS2

FS1

Application Buffer

Parallel File Server

Figure 5: Parallel File Server

decide where their data should be placed in the memory region). After creating the memory descriptor and
linking it into the appropriate portal entry, the application sends a read or write request (using PtlPut)
to one of the �le server processes. The �le server processes can then use put or get operations with the

appropriate o�sets to �ll or retrieve the contents of the application's bu�er. To know when the operation
has completed, the application can add an event queue to the memory descriptor and add up the lengths of
the remote operations until the sum is the size of the requested I/O operation.

5.2 Dealing with Dropped Requests

If a process does not anticipate unexpected requests, they will be discarded. Applications using the Portals
API can query the dropped count for the interface to determine the number of requests that have been
dropped (see Section 3.5.4). While this approach minimizes resource consumption, it does not provide
information that might be critical in debugging the implementation of a higher level protocol.

To keep track of more information about dropped requests, we use a memory descriptor that truncates
each incoming request to zero bytes and logs the \dropped" operations in an event queue. Note that the
operations are not dropped in the Portals sense, because the operation succeeds.

The following code fragment illustrates an implementation of this approach. In this case, we assume that
a thread is launched to execute the function watch_drop. This code starts by building an event queue to
log truncated operations and a memory descriptor to truncate the incoming requests. This example only
captures \dropped" requests for a single portal. In a more realistic situation, the memory descriptor would
be appended to the match list for every portal. We also assume that the thread is capable of keeping up with
the \dropped" requests. If this is not the case, we could use a �nite threshold on the memory descriptor to
capture the �rst few dropped requests.

#include <stdio.h>

#include <stdlib.h>

#include <portals.h>

#de�ne DROP SIZE 32 /� number of dropped requests to track �/

int watch drop(ptl handle ni t ni, ptl pt index t index) f

ptl handle eq t drop events;

ptl event t event;

ptl handle md t drop em;

ptl md t drop desc;

ptl process id t any proc;

ptl handle me t match any;

/� create the event queue �/

if(PtlEQAlloc(ni, DROP SIZE, &drop events) 6= PTL OK) f

38

fprintf(stderr, "Couldnt create the event queue\n");

exit(1);

g

/� build a match entry �/

any proc.pid nid = PTL ADDR GID;

any proc.gid = PTL ID ANY;

any proc.rid = PTL ID ANY;

PtlMEAttach(index, any proc, 0, �(ptl match bits t)0, PTL RETAIN,

&match any);

/� create the memory descriptor �/

drop desc.start = NULL;

drop desc.length = 0;

drop desc.threshold = PTL MD THRESH INF;

drop desc.options = PTL MD OP PUT j PTL MD OP GET j PTL MD TRUNCATE;

drop desc.user ptr = NULL;

drop desc.eventq = drop events;

if(PtlMDAttach(match any, drop desc, &drop em) 6= PTL OK) f

fprintf(stderr, "Couldnt create the memory descriptor\n");

exit(1);

g

/� watch for "dropped" requests �/

while(1) f

if(PtlEQWait(drop events, &event) 6= PTL OK) break;

fprintf(stderr, "Dropped request from gid = %d, rid = %d\n",

event.initiator.gid, event.initiator.rid);

g

g

5.3 Message Transmission in MPI

We conclude this section with a fairly extensive example that describes an approach to implementing message
transmission for MPI. Like many MPI implementations, we distinguish two message transmission protocols:
a short message protocol and a long message protocol. We use the constant MPI_LONG_LENGTH to determine
the size of a long message.

For small messages, the sender simply sends the message and presumes that the message will be received
(i.e., the receiver has allocated a memory region to receive the message body). For large messages, the sender
also sends the message, but does not presume that the message body will be saved. Instead, the sender builds
a memory descriptor for the message and enables get operations on this descriptor. If the target does not
save the body of the message, it will record an event for the put operation. When the process later issues a
matching MPI receive, it will perform a get operation to retrieve the body of the message.

The following code presents a function that implements the send side of the protocol. The global variable
EndGet is the last match entry attached to the portal index used for posting long messages. This entry does
not match any incoming requests (i.e., the memory descriptor rejects all get operations) and is built during
initialization of the MPI library. The other global variable,MPI_NI, is a handle for the network interface used
by the MPI implementation.

extern ptl handle me t EndGet;

extern ptl handle ni t MPI NI;

void MPIsend(void �buf, ptl size t len, void �data, ptl handle eq t eventq,

ptl process id target, ptl match bits t match)

f

ptl handle md t send handle;

ptl md t mem desc;

39

ptl ack req t want ack = PTL NOACK REQ;

mem desc.start = buf;

mem desc.length = len;

mem desc.threshold = 1;

mem desc.options = PTL MD GET OP;

mem desc.user ptr = data;

mem desc.eventq = eventq;

if(len � MPI LONG LENGTH) f

ptl handle me t me handle;

/� add a match entry to the end of the get list �/

PtlMEInsert(target, match, 0, PTL UNLINK, PTL INS BEFORE, EndGet, &me handle);

PtlMDAttach(me handle, mem desc, PTL UNLINK, NULL);

/� we want an ack for long messages �/

want ack = PTL ACK REQ;

g

/� create a memory descriptor and send it �/

PtlMDBind(MPI NI, mem desc, &send handle);

PtlPut(send handle, want ack, target, MPI SEND PINDEX, MPI AINDEX, match, 0);

g

The MPISend function returns as soon as the message has been scheduled for transmission. The event
queue argument, eventq, can be used to determine the disposition of the message. Assuming that eventq is
not PTL_EQ_NONE, a PTL_EVENT_SENT event will be recorded for each message as the message is transmitted.
For small messages, this is the only event that will be recorded in eventq. In contrast, long messages
include an explicit request for an acknowledgement. If the target process has posted a matching receive,
the acknowledgement will be sent as the message is received. If a matching receive has not been posted,
the message will be discarded and no acknowledgement will be sent. When the target process later issues

a matching receive, the receive will be translated into a get operation and a PTL_EVENT_GET event will be
recorded in eventq.

Figure 6 illustrates the organization of a match list for receiving MPI messages. The match list starts
with entries that match the preposted MPI receives (these entries are not shown in Figure 6); followed by a
match entry that rejects all incoming requests, called the RcvMark ; followed by two match entries that match
all incoming requests. The last two match entries are used for unexpected messages, i.e., messages that do
not match any of the receives that have been posted by the local MPI process. The �rst of these handles
short messages by saving the body of the message, while the second handles long messages by discarding
the message body. All of the memory descriptors associated with these match entries share a common event
queue to ensure that unexpected messages are processed in arrival order.

When the local MPI process posts an MPI receive, a new match entry is inserted before the RcvMark

entry and, as such, after all of the previously posted receives. This ensures that preposted receives are
matched in the order that they were posted (a requirement of MPI). Inserting an entry for a preposted
receive is not a matter of simply inserting a match entry before the RcvMark. You must �rst check to see
if a matching message has arrived before adding the new entry to match list. The trick is to avoid the race
condition that results from the possibility that a matching message arrives after you have searched the match
list, but before you have inserted the preposted receive. The function presented in

The following code presents a function that avoids this race condition. The code starts by creating a
memory descriptor and a match entry which is inserted before the RcvMark. Because the memory descriptor's
threshold is initially set to zero, the memory descriptor will not respond to any incoming operations. After
inserting the new match entry, the code searches for a matching message that has already been received. If
a match is found, the memory descriptor and match entry are released and the function returns. Otherwise,
the code conditionally updates the threshold member of the memory descriptor. The update is predicated
by the condition that no unexpected messages have arrived since the start of the search.

40

Buffer

Buffer

Unexpected
Message

Event Queue

Match None None

Unexpected
Messages

Preposted
Receives

Buffer

Length=0
Truncate
No Ack

Short Message
Unlink

Short Message
Unlink

Short Message
Unlink

Match Entries Memory Descriptors Memory RegionsEvent Queues

Match Any

Match Any

RcvMark

Figure 6: Message Reception in MPI

extern ptl handle eq t UnexpQueue;

extern ptl handle me t RcvMark;

extern ptl handle me t ShortMatch;

typedef struct event list tag f

ptl event t event;

struct event list tag �next;

g event list;

extern event list Rcvd;

void AppendRcvd(ptl event t event)

f

/� append an event onto the Rcvd list �/

g

int SearchRcvd(void �buf, ptl size t len, ptl process id t sender, ptl match bits t match,

ptl match bits t ignore, ptl event t �event)

f

/� Search the Rcvd event queue, looking for a message that matches the requested message.

� If one is found, remove the event from the Rcvd list and return it. �/

g

typedef enum f RECEIVED, POSTED g receive state;

receive state CopyMsg(void �buf, ptl size t length, ptl event t event, ptl md t md buf)

f

ptl md t md buf;

41

ptl handle me t me handle;

if(event.rlength � MPI LONG LENGTH) f

PtlMDBind(MPI NI, md buf, &md handle);

PtlGet(event.initiator, MPI GET PINDEX, 0, event.match bits, MPI AINDEX, md handle);

return POSTED;

g else f

/� copy the message and recycle the bu�er �/

memcpy(buf, event.md desc.start, len);

event.md desc.threshold = 1;

PtlMDAttach(ShortMatch, event.md desc, PTL UNLINK, NULL);

return RECEIVED;

g

g

receive state MPIreceive(void �buf, ptl size t len, void �MPI data, ptl handle eq t eventq,

ptl process id t sender, ptl match bits t match, ptl match bits t ignore)

f

ptl md t md buf;

ptl handle md t md handle;

ptl handle me t me handle;

ptl event t event;

/� build a memory descriptor for the receive �/

md buf.start = buf;

md buf.length = len;

md buf.threshold = 0; /� temporarily disabled �/

md buf.options = PTL MD PUT OP;

md buf.user ptr = MPI data;

md buf.eventq = eventq;

/� see if we have already received the message �/

if(SearchRcvd(buf, len, sender, match, ignore, &event))

return CopyMsg(buf, length, event, md buf);

/� create the match entry and attach the memory descriptor �/

PtlMEInsert(sender, match, ignore, PTL UNLINK, PTL INS BEFORE, RcvMark, &me handle);

PtlMDAttach(me handle, md buf, PTL UNLINK, &md handle);

md buf.threshold = 1;

do

if(PtlEQGet(UnexpQueue, &event) 6= PTL EQ EMPTY) f

if(MPIMatch(event, match, ignore, sender)) f

PtlMDUnlink(md handle); /� don't leave the receive posted �/

return CopyMsg(buf, len, event, md buf);

g else f

AppendRcvd(event);

g

g

while(PtlMDUpdate(md handle, NULL, &md buf, unexp queue) == PTL NOUPDATE);

return POSTED;

g

42

References

[1] R. Brightwell, D. S. Greenberg, A. B. Maccabe, and R. Riesen. Massively Parallel Computing with Commodity

Components. Parallel Computing, To appear, 2000.

[2] R. Brightwell and L. Shuler. Design and implementation of MPI on Puma portals. In Proceedings of the Second

MPI Developer's Conference, pages 18{25, July 1996.

[3] Compaq, Microsoft, and Intel. Virtual Interface Architecture Speci�cation Version 1.0. Technical report, Com-

paq, Microsoft, and Intel, December 1997.

[4] Cray Research, Inc. SHMEM Technical Note for C, SG-2516 2.3, October 1994.

[5] M. Lauria, S. Pakin, and A. Chien. EÆcient Layering for High Speed Communication: Fast Messages 2.x. In

Proceedings of the IEEE International Symposium on High Performance Distributed Computing, 1998.

[6] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. SUNMOS for the Intel Paragon: A brief user's

guide. In Proceedings of the Intel Supercomputer Users' Group. 1994 Annual North America Users' Conference.,

pages 245{251, June 1994.

[7] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The International Journal of

Supercomputer Applications and High Performance Computing, 8, 1994.

[8] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[9] Myricom, Inc. The GM Message Passing System. Technical report, Myricom, Inc., 1997.

[10] Sandia National Laboratories. ASCI Red, 1996. http://www.sandia.gov/ASCI/TFLOP.

[11] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup. The Puma

operating system for massively parallel computers. In Proceeding of the 1995 Intel Supercomputer User's Group

Conference. Intel Supercomputer User's Group, 1995.

[12] Task Group of Technical Committee T11. Information Technology - Scheduled Transfer Protocol - Working

Draft 2.0. Technical report, Accredited Standards Committee NCITS, July 1998.

43

Distribution:

1 MS 0321 W. J. Camp, 9200
1 MS 0841 P. J. Hommert, 9100
1 MS 0318 G. S. Davidson, 9201
1 MS 0318 P. D. Heermann, 9215
1 MS 1111 S. S. Dosanjh, 9221
1 MS 1110 D. E. Womble, 9222
1 MS 1110 N. D. Pundit, 9223
1 MS 0321 A. L. Hale, 9224
1 MS 1111 G. S. He�e�nger, 9225
1 MS 0847 R. W. Leland, 9226
1 MS 0819 J. Peery, 9231
1 MS 0820 P. Yarrington, 9232
1 MS 0806 L. Stans, 4616
2 MS 0899 Technical Library, 4916
1 MS 9018 Central Technical Files, 8940{2
1 MS 0612 Review and Approval Desk, 4912

For DOE/OSTI

44

	Abstract
	Acknowledgment
	Contents
	Glossary
	1 Introduction
	1.1 Overview
	1.2 Purpose
	1.3 Background
	1.4 Scalability
	1.5 Communication Model
	1.6 Zero Copy, OS Bypass and Application Bypass

	2 An Overview of the Portals API
	2.1 Data Movement
	2.2 Portal Addressing
	2.3 Access Control

	3 The Portals API
	3.1 Naming Conventions
	3.2 Base Types
	3.3 Initialization and Cleanup
	3.4 Process Identi cation
	3.5 Network Interfaces
	3.6 Match Entries and Match Lists
	3.7 Memory Descriptors
	3.8 Events and Event Queues
	3.9 The Access Control Table
	3.10 Data Movement Operations
	3.11 Summary

	4 The Semantics of Message Transmission
	4.1 Sending Messages
	4.2 Receiving Messages

	5 Examples
	5.1 Parallel File Servers
	5.2 Dealing with Dropped Requests
	5.3 Message Transmission in MPI

	References
	Distribution:

